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Design of Energetic Ionic Liquids (PREPRINT) 
Jerry A. Boatz, Air Force Research Laboratory, Space and Missile Propulsion Division, 
Edwards AFB, CA;  Hui Li, Department of Chemistry, University of Nebraska-Lincoln; Mark S. 
Gordon, Department of Chemistry, Iowa State University. 

An essential need of the US Air Force is the discovery, development, and fielding of new, 
energetic materials for advanced chemical propulsion in space and missile applications.  Some of 
the key factors driving the requirement for new chemical propellants include: (a) improved 
performance in terms of increased specific impulse and density, (b) reduced sensitivity to 
external stimuli such as impact, friction, shock, and electrostatic discharge, and (c) mitigation of 
environmental and toxicological hazards (and the resulting costs) associated with currently used 
propellants. 

A class of compounds which can potentially meet these requirements is known as ionic Liquids 
(ILs), which are chemical salts with unusually low melting points. The physical and chemical 
properties of ILs render them useful for many purposes, most notably as environmentally benign 
(“green”) solvents/reaction media but also as catalysts, electrolytes, etc.[1] From a Department 
of Defense (DoD) perspective, ILs are being explored as new propellants and explosives.[2]  The 
Air Force, in particular, is interested in ILs as potential replacements for currently used 
monopropellants such as hydrazine – which is carcinogenic, highly toxic, and has relatively 
modest performance characteristics. In contrast, many ILs have superior densities and specific 
impulses as well as significantly reduced sensitivity and toxicity characteristics. Furthermore, 
their properties can be carefully tuned via the choice of the component ions. 

The overall objective of the Design of Energetic Ionic Liquids challenge project is to address 
several key technical issues and challenges associated with the characterization, design, and 
development of ILs as new monopropellants. Among these, for example, are a fundamental 
understanding of the (in)stability of ILs, the intrinsic nature of the short- and long-range structure 
and interactions between the component ions[2e-f], and identification of the key steps in the 
initial stages of decomposition and combustion[2a-c]. The research described in this article is 
focused on characterization of the structures and stabilities of ion pair clusters and prediction of 
their interaction energies in the gas phase.  

Our computational approach utilizes quantum chemical methods for prediction of ion pair 
structures and interaction energies. In particular, geometry optimizations were performed using 
second-order perturbation theory[3] (MP2, also known as MBPT(2)) with the aug-cc-pvdz basis 
set[4], denoted as MP2/aug-cc-pvdz.  Relative energies were refined using a systematic series of 
single-point energy calculations at the MP2 and coupled cluster (e.g., singles and doubles with a 
perturbative estimate of triples, CCSD(T)[5]) levels of theory. Specifically, MP2/cc-pvdz, 
MP2/aug-cc-pvdz, and CCSD(T)/cc-pvdz energy calculations were combined to obtain estimated 
CCSD(T)/aug-cc-pvdz relative energies. All computations were performed using the GAMESS 
quantum chemistry code.[6] 

MP2 and coupled cluster (CC) calculations in GAMESS utilize a library of communications 
routines known as the Distributed Data Interface (DDI),[7] a high-level communications layer 
operating between GAMESS and the underlying message-passing protocols (Shared Memory 
(SHMEM), Message Passing Interface (MPI), Low-level Application Programming Interface 
(LAPI), or sockets within a Transmission Control Protocol/Internet Protocol (TCP/IP) stack.)  In 
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the case of the Naval Oceanographic Office Major Shared Resource Center (NAVO MSRC) 
IBM systems KRAKEN and BABBAGE, DDI uses MPI for intranode communications and the 
LAPI protocol for messages between nodes. These types of calculations have significant memory 
requirements and therefore are well suited for execution on systems with large amounts of 
memory per node, such as BABBAGE. Coupled cluster calculations are especially memory 
intensive and, as implemented in GAMESS with DDI, utilize a three-fold hierarchy of memory. 
First, a modest amount of Replicated Data (RD) is exclusively assigned to each core. Similarly, a 
block of Node-specific Data (ND) is reserved on each node and is shared by all the cores on that 
node. The remaining memory on each node is collectively shared by all cores as a large, single 
pool of Distributed Data (DD). Therefore, the required Memory (MCC) per node for CC 
calculations is MCC = P*(RD) + (ND) + (DD)/N, where “P” and “N” are the number of cores per 
node and the total number of nodes, respectively, used in the computation. 

The values of RD, ND, and DD are determined by the specifics of the calculation, whereas 
suitable values of P and N are dictated by the hardware; specifically, the amount of accessible 
physical memory per node. If necessary, P can be chosen to be smaller than the number of 
available cores per node Pmax in order to reduce the amount of required memory per node. Table 
1 summarizes the memory requirements for CCSD(T) calculations using a series of increasingly 
large basis sets. Only the smallest calculation (CCSD(T)/cc-pvdz) could be performed within the 
constraints of the hardware (Pmax and Mmax) and the challenge queue limits (Nmax and Tmax, see 
Table 2.)  In principle, the CCSD(T)/6-311++G(d,p)[8] and CCSD(T)/aug-cc-pvdz calculations 
could be run on the pair of “bigmem” nodes, but the estimated required wall time of the former, 
on the order of 100 days, is prohibitively long. Conversely, this calculation would be within the 
realm of practicality if ~100 bigmem nodes were available.  

One of the specific ion combinations considered in this work is the 1,2,4-triazolium cation 
([C2N3H4]+) paired with the dinitramide anion ([N(NO2)2]-). Of the numerous structures found 
for the two pairs of 1,2,4-triazolium and dinitramide ions, or the pairs of corresponding neutral 
1,2,4-triazole and dinitramine molecules, the most stable MP2/aug-cc-pvdz optimized geometries 
are shown in Figure 1. In the ionic structure, each 1,2,4-triazolium forms two hydrogen bonds, 
via the hydrogens on the N atoms, to the O atoms of the dinitramide ions. Interestingly, this 
structure exhibits parallel stacking of the two cationic 1,2,4-triazolium rings. The interplane 
distance is ~3.2 Å, with a parallel displacement of ~1.4 Å. The corresponding neutral tetramer 
shows a similar parallel stacking arrangement of the triazole rings.  

Furthermore, it is of interest to determine the cluster size at which the ion pair structures become 
more stable than the corresponding neutral pair structures. A previous study predicted that ion 
pair dimers are typically higher in energy than neutral pair dimers.[2c]  Including zero point 
vibrational energy (ZPVE) corrections, the ionic tetramer in Figure 1 is 1.2 kilocalorie / mole 
(kcal/mol) lower than that of the neutral one. The MP2 method tends to predict higher energies 
for ionic species vs. neutral species,[2c] so more accurate CCSD(T)/aug-cc-pVDZ energy 
calculations of these two tetramer structures were desired. However, since the computational cost 
of CCSD(T)/aug-cc-pVDZ is prohibitive, these energies were approximated from the MP2/aug-
cc-pVDZ energies by estimating the electron correlation energy differences using three 
independent methods: (1) the differences between the MP2/cc-pVDZ and CCSD(T)/cc-pVDZ 
energies of the tetramers, (2) the differences between the MP2/aug-cc-pVDZ and CCSD(T)/aug-
cc-pVDZ energies of the twelve pairs of dimers in these two tetramers, and (3) the differences 
between the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ energies of the eight monomers in 
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these two tetramers. Using these three methods, and including ZPVE corrections, the estimated 
CCSD(T)/aug-cc-pVDZ energy of the ionic tetramer is lower than that of the neutral tetramer by 
5.7, 7.3, and 7.7 kcal/mol, respectively. 

In conclusion, quantum chemical calculations suggest that cation-cation parallel stacking 
structures can exist in very small ionic clusters such as two 1,2,4-triazolium cations and two 
dinitramide anions. Furthermore, for two pairs of 1,2,4-triazolium and dinitramide, ionic 
structures are more stable than the corresponding neutral structures. Finally, it should be noted 
that lower theoretical methods which do not include the effects of electron correlation, such as 
Hartree-Fock, do not predict a parallel stacking geometry of the rings. Therefore, it is essential to 
utilize correlated methods such as MP2 and CCSD(T) in order to obtain proper descriptions of 
the structures and interaction energies of these ion clusters. The structural motifs and interaction 
patterns found in this study provide new understanding of ionic materials with aromatic rings.  
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Table 1. Memory requirements for CCSD(T) single point energy calculations.a 

Basis set 

(# of AOs) 

RD 
(MW/core) 

ND 

(MW/node) 

DD 

(MW) 

P 

 

N 

 

MCC 

(MW/node) 

cc-pvdz 

(376) 

8 1175 4950 16 64 1,381 

6-311++G(d,p) 

(580) 

22 3298 16,000 16 

1 

16 

64 

64 

2 

3,900b 

3,570b 

11,474c 

aug-cc-pvdz 

(622) 

26 3,875 19,150 1 

1 

64 

2 

4,200b 

13,476c 

aug-cc-pvtz 

(1268) 

330 18,493 146,000 1 

1 

64 

2 

21,105b 

91,823d 

aug-cc-pvqz 

(2228) 

2495 60,370 807,000 1 

1 

64 

2 

75,475b 

466,365d 

a “MW” denotes megawords (106 64-bit words.) 

b Exceeds amount of usable physical memory on each standard node (see Table 2.) 

c Fits within usable physical memory on each bigmem node, but execution time is prohibitively 
long. 

d Exceeds amount of usable physical memory on each bigmem node (see Table 2.) 
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Table 2. Challenge and bigmem queue characteristics on babbage.a 

Queue Cores per node 

(Pmax) 

Maximum # of nodes 
(Nmax) 

Maximum  
memory/node Mmax 

(MW/node) 

Maximum 
wall time 
Tmax  

(hours) 

challenge 16 64 ~3,500 48 

bigmem 16 2 ~15,500 48* 

a “MW” denotes megawords (106 64-bit words.) 

* 48 hour limit obtained via special request. The default wall time limit of the bigmem queue is 
12 hours. 
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Figure 1. MP2/aug-cc-pVDZ optimized structures of two pairs of 1,2,4-triazolium (1,2,4-
triazole) and dinitramide (dinitramine) molecules. H is white, C is gray, O is red, N is blue.  

This page is Distribution A:  approved for public release; distribution unlimited. 


